Thursday, December 14, 2006

Some interesting papers from NIPS 2006

NIPS'2006 has just released their online proceedings.
http://books.nips.cc/nips19.html

Here are some interesting papers:


------------------------------------------------------------
Dirichlet-Enhanced Spam Filtering based on Biased Samples
Steffen Bickel, Tobias Scheffer [ps.gz][pdf][bibtex]

Denoising and Dimension Reduction in Feature Space
Mikio Braun, Joachim Buhmann, Klaus-Robert Müller [ps.gz][pdf][bibtex]


Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation
Gavin Cawley, Nicola Talbot, Mark Girolami [ps.gz][pdf][bibtex]

Modeling General and Specific Aspects of Documents with a Probabilistic Topic Model
Chaitanya Chemudugunta, Padhraic Smyth, Mark Steyvers [ps.gz][pdf][bibtex]

Learning from Multiple Sources
Koby Crammer, Michael Kearns, Jennifer Wortman [ps.gz][pdf][bibtex]

Optimal Single-Class Classification Strategies
Ran El-Yaniv, Mordechai Nisenson [ps.gz][pdf][bibtex]

Clustering Under Prior Knowledge with Application to Image Segmentation
Mario Figueiredo, Dong Seon Cheng, Vittorio Murino [ps.gz][pdf][bibtex]

Data Integration for Classification Problems Employing Gaussian Process Priors
Mark Girolami, Mingjun Zhong [ps.gz][pdf][bibtex][zip]


Correcting Sample Selection Bias by Unlabeled Data
Jiayuan Huang, Alex Smola, Arthur Gretton, Karsten M. Borgwardt, Bernhard Schölkopf [ps.gz][pdf][bibtex]

Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods
Matthias Seeger [ps.gz][pdf][bibtex]





---------------------------------------------------------------------
Interesting:
Image Retrieval and Classification Using Local Distance Functions
Andrea Frome, Yoram Singer, Jitendra Malik [ps.gz][pdf][bibtex][tgz]

Branch and Bound for Semi-Supervised Support Vector Machines
Olivier Chapelle, Vikas Sindhwani, Sathiya Keerthi [ps.gz][pdf][bibtex]


Max-margin classification of incomplete data
Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, Daphne Koller [ps.gz][pdf][bibtex]

Bayesian Ensemble Learning
Hugh Chipman, Edward George, Robert McCulloch [ps.gz][pdf][bibtex]


Map-Reduce for Machine Learning on Multicore
Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Ng, Kunle Olukotun [ps.gz][pdf][bibtex]


Hierarchical Dirichlet Processes with Random Effects
Seyoung Kim, Padhraic Smyth [ps.gz][pdf][bibtex]

Ordinal Regression by Extended Binary Classification
Ling Li, Hsuan-Tien Lin [ps.gz][pdf][bibtex]

1 comment:

Anonymous said...

unrealistic verdanaubr vkosnd microscopic redundancy subscription beijing mentalities emulate disorders neil
lolikneri havaqatsu